首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   4篇
  国内免费   3篇
化学   110篇
晶体学   5篇
力学   6篇
数学   32篇
物理学   72篇
  2023年   1篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2016年   7篇
  2015年   4篇
  2014年   2篇
  2013年   12篇
  2012年   13篇
  2011年   8篇
  2010年   10篇
  2009年   10篇
  2008年   15篇
  2007年   7篇
  2006年   11篇
  2005年   11篇
  2004年   13篇
  2003年   9篇
  2002年   6篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   1篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   3篇
  1986年   5篇
  1985年   6篇
  1984年   4篇
  1983年   6篇
  1982年   7篇
  1980年   2篇
  1979年   3篇
  1978年   4篇
  1977年   4篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1971年   2篇
  1945年   1篇
  1944年   1篇
排序方式: 共有225条查询结果,搜索用时 15 毫秒
71.
72.
Interactions between sodium dodecyl sulfate and zein protein, a model system for the understanding of the effect of surfactants on skin, were investigated using a range of techniques involving UV-vis spectroscopy, TOC (total organic carbon analysis), electrophoresis, and static and dynamic light scattering. Zein protein was solubilized by SDS. The adsorption of SDS onto insoluble protein fraction caused the zeta potential of the complex to become more negative. From these values, we calculated the Gibbs energy of absorption, which decreases when the SDS concentration is raised. Finally the structure of the complex, based on the analysis by static and dynamic light scattering, is proposed to be rod like.  相似文献   
73.
The interaction of a hydrophobically modified anionic polymer (PMAOVE) with a cationic surfactant (DTAB) was studied using a multi-technique approach: turbidity, surface tension, and viscosity measurements, as well as EPR (5-doxyl stearic acid) and fluorescence (pyrene) probe techniques were used. In the investigated pH range (4-10), the cationic surfactant headgroups interact with the anionic carboxylic groups of the polymer backbone. In addition, nonpolar interactions of the surfactant chains with the n-octyl chains of PMAOVE stabilize the PMAOVE-DTAB complexes. Charge neutralization of the anionic polymer by the cationic surfactant leads to precipitation of the PMAOVE-DTAB complex at a certain DTAB concentration range. Further addition of DTAB causes a charge reversal of the complex and, subsequently, resolubilization of the precipitate. At an acidic pH (pH = 4), a second precipitation was observed, which is probably caused by conformational changes in the PMAOVE-DTAB complex. This second precipitate can be resolubilized by further addition of surfactant. At a neutral and basic pH, this second precipitation is absent. EPR analysis indicates that the surfactants form an ordered structure at the extended polymer chain at a neutral and basic pH, whereas at an acidic pH, a less ordered surfactant layer is formed on the coiled polymer with more hydrophobic microdomains.  相似文献   
74.
Calmodulin-mediated reversible immobilization of enzymes   总被引:1,自引:0,他引:1  
This work demonstrates the use of the protein calmodulin, CaM, as an affinity tag for the reversible immobilization of enzymes on surfaces. Our strategy takes advantage of the of the reversible, calcium-mediated binding of CaM to its ligand phenothiazine and of the ability to produce fusion proteins between CaM and a variety of enzymes to reversibly immobilize enzymes in an oriented fashion to different surfaces. Specifically, we employed two different enzymes, organophosphorus hydrolase (OPH) and beta-lactamase and two different solid supports, a silica surface and cellulose membrane modified by covalently attaching a phenothiazine ligand, to demonstrate the versatility of our immobilization method. Fusion proteins between CaM-OPH and CaM-beta-lactamase were prepared by using genetic engineering strategies to introduce the calmodulin tail at the N-terminus of each of the two enzymes. In the presence of Ca(2+), CaM adopts a conformation that favors interaction between hydrophobic pockets in CaM and phenothiazine, while in the presence of a Ca(2+)-chelating agent such as EGTA, the interaction between CaM and phenothiazine is disrupted, thus allowing for removal of the CaM-fusion protein from the surface under mild conditions. CaM also acts as a spacer molecule, orienting the enzyme away from the surface and toward the solution, which minimizes enzyme interactions with the immobilization surface. Since the method is based on the highly selective binding of CaM to its phenothiazine ligand, and this is covalently immobilized on the surface, the method does not suffer from ligand leaching nor from interference from other proteins present in the cell extract. An additional advantage lies in that the support can be regenerated by passing through EGTA, and then reused for the immobilization of the same or, if desired, a different enzyme. Using a fusion protein approach for immobilization purposes avoids the use of harsh conditions in the immobilization and/or regeneration steps, which could cause inactivation of the immobilized enzyme. Moreover, we have demonstrated that the CaM affinity tag allows immobilization of enzymes on a variety of surfaces without compromising their enzymatic activity substantially; for example, the immobilized OPH retained more than 80% of the activity of the free enzyme. Our results with beta-lactamase showed the feasibility of using a phenothiazine surface in several consecutive loading and regeneration cycles. This can be advantageous when expensive and/or difficult to obtain immobilization surfaces have to be employed; the immobilization surface could be reused to immobilize the same or a different enzyme using the CaM affinity tail. We also determined that the phenothiazine-modified silica particles are stable for long periods of time, i.e., up to 2 years when stored at 4 degrees C. It is envisioned that this type of reversible immobilization may find applications in the development of reversible, reusable biosensors and bioreactors endowed with the additional advantage that the biological element at the surface of the sensor or bioreactor could be replaced under mild conditions when needed to sense or process a different target molecule.  相似文献   
75.
The design and synthesis of a new family of potentially pentadentate N3Se2 or N3Te2 type donors bearing a 2,6-disubstituted pyridine dicarboxamide moiety as the central fragment [-NH-C(O)-pyridine-C(O)-NH-] functionalized with chalcogen as additional donors in the appended arms of the pyridine ring through the alkyl spacers and their potential applications and reactivity toward d8 and d10 metal ions have been demonstrated.  相似文献   
76.
Asphaltenic solids formed in the Rangely field in the course of a carbon dioxide flood and heptane insolubles in the oil from the same field were used in this study. Four different solvents were used to dissolve the asphaltenes. Near-infrared (NIR) spectroscopy was used to determine the onset of asphaltene precipitation by heptane titration. When the onset values were plotted versus asphaltene concentrations, distinct break points (called critical aggregation concentrations (CAC) in this paper) were observed. CACs for the field asphaltenes dissolved in toluene, trichloroethylene, tetrahydrofuran, and pyridine occurred at concentrations of 3.0, 3.7, 5.0, and 8.2 g/l, respectively. CACs are observed at similar concentrations as critical micelle concentrations (CMC) for the asphaltenes in the solvents employed and can be interpreted to be the points at which rates of asphaltene aggregations change. CMC values of asphaltenes determined from surface tension measurements (in pyridine and TCE) were slightly higher than the CAC values measured by NIR onset measurements. The CAC for heptane-insoluble asphaltenes in toluene was 3.1 g/l. Thermal gravimetric analysis (TGA) and elemental compositions of the two asphaltenes showed that the H/C ratio of the heptane-insoluble asphaltenes was higher and molecular weight (measured by vapor pressure osmometry) was lower.  相似文献   
77.
A simple, rapid, and precise method is developed for the quantitative simultaneous determination of metformin and pioglitazone in a combined pharmaceutical-dosage form. Separation is achieved with a Zorbax XDB C(18), 15-cm analytical column using buffer-acetonitrile (66:34, v/v) of pH 7.1, adjusted with orthophosphoric acid as the mobile phase. The buffer used in the mobile phase contains 10mM disodium hydrogen phosphate and 5mM sodium dodecyl sulphate in double-distilled water. The instrumental settings are flow rate of 1 mL/min, column temperature at 40 degrees C, and detector wavelength of 226 nm. The internal standard method is used for the quantitation of the ingredients of this combination. Methylparaben is used as an internal standard. The method is validated and shown to be linear for metformin and pioglitazone. The correlation coefficients for metformin and pioglitazone are 0.9991 and 0.9999, respectively. The relative standard deviations for six replicate measurements in two sets of each drug in the tablets are always less than 2%.  相似文献   
78.
Calmodulin (CaM) was used as an affinity tail to facilitate the purification of the green fluorescent protein (GFP), which was used as a model target protein. The protein GFP was fused to the C-terminus of CaM, and a factor Xa cleavage site was introduced between the two proteins. A CaM-GFP fusion protein was expressed in E. coli and purified on a phenothiazine-derivatized silica column. CaM binds to the phenothiazine on the column in a Ca(2+)-dependent fashion and it was, therefore, used as an affinity tail for the purification of GFP. The fusion protein bound to the affinity column was then subjected to a proteolytic digestion with factor Xa. Pure GFP was eluted with a Ca(2+)-containing buffer, while CaM was eluted later with a buffer containing the Ca(2+)-chelating agent EGTA. The purity of the isolated GFP was verified by SDS-PAGE, and the fluorescence properties of the purified GFP were characterized.  相似文献   
79.
Complexes of ruthenium(III) with N,N'-disalicylidene-l,2-phenylenediamine (H2dsp), N,N'-disalicylidene-3,4-diaminotoluene (H2dst), 4-nitro-N,N'-disalicylidene-1,2-phenylenediamine (H2ndsp) and N,N'-disalicylidene ethylenediamine (H2salen) have been prepared and characterized by elemental analysis, molar conductivity, spectral methods (mid-infrared, 1H NMR and UV-vis spectra) and simultaneous thermal analysis (TG and DTG) techniques. The molar conductance measurements proved that all these complexes are non-electrolytes. The electronic spectra measurements were used to infer the structures. The IR spectra of the ligands and their complexes are used to identify the type of bonding. The kinetic thermodynamic parameters such as: E*, DeltaH*, DeltaS* and DeltaG* are estimated from the DTG curves. The four ligands and their complexes have been studied for their possible biological antifungal activity.  相似文献   
80.
Lawrence NS  Deo RP  Wang J 《Talanta》2004,63(2):443-449
The use of a carbon-nanotube paste (CNTP) electrode provides an effective means for the determination of homocysteine. A decrease of ca. 120 mV in the overpotential for the oxidation of homocysteine compared to a traditional carbon paste electrode, is reported along with greatly enhanced signal-to-noise characteristics. The analytical parameters have been assessed with a linear range from 5 to 200 μM and a detection limit of 4.6 μM. Furthermore, the generic nature of this increased reactivity of the CNTP surface towards thiol moieties has been demonstrated with cysteine, glutathione and n-acetylcysteine, providing a greatly enhanced electrochemical response compared to the carbon paste electrode.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号